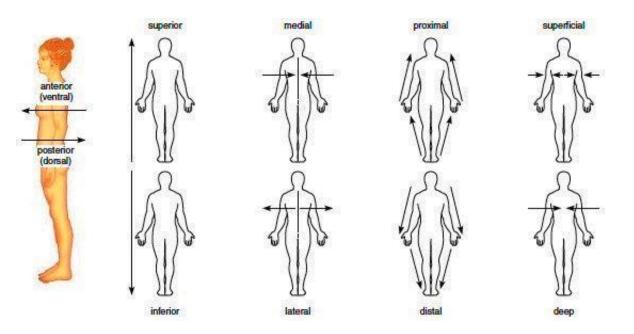

Created by: Larisa Gronemo

basic academics for dance

BIOMECHANICS & KINESIOLOGY (FOR DANCERS)

ANATOMICAL TERMINOLOGY:


- → TERMS OF DIRECTION
- → TERMS OF MOTION
- → CONNECTIVE TISSUES
- → CARTILAGE

ANATOMICAL TERMINOLOGY

KINESIOLOGY is the study of	and
Kinesiology brings together the fields of ana and geometry and relates them to human m utilizes principles of mechanics, musculosk neuromuscular physiology.	ovement. Thus Kinesiology
The termis frequently to the timesiology. The differences between the two nesearch focus.	
Mechanics is the branch of physics dealing when the motion produced by their actions. Biom principles and methods of mechanics and appropriate and function of the human body.	echanics involves taking the
	will be
	our point of reference when referring to terms of direction & motion.
8 (Y) & 8 (T) &	We can use anatomical terminology for describing the
	bodies
2112 7112	and
sciencephotolibrary	

TERMS OF DIRECTION

Superior: <u>UP/ABOVE</u>	Deep: DEEP/FARTHER FROM SURFACE
Inferior:	Superficial:(muscles usually)
Anterior: FRONT/FORWARDS Posterior: BACK/BACKWARDS	Plantar Surface: SOLES OF FEET Palmar Surface: PALMS OF HANDS
Medial: CLOSER TO THE MIDLINE Lateral:	Prone Position: LYING FACE DOWN Supine Position: LYING FACE UP
Proximal: CLOSER TO THE TRUNK Distal: FARTHER AWAY FROM THE	Ipsilateral: Contralateral: <u>ON OPPOSITE SIDES</u>

TRUNK (limbs usually/root of limb)

TERMS OF MOTION/MOVEMENT

Flexion: TO BEND/BONES ARE BROUGHT CLOSER TOGETHER. Extension: TO RETURN FROM FLEXION TO ANATOMICAL POSITION.

Abduction: TO TAKE AWAY FROM THE MIDLINE.

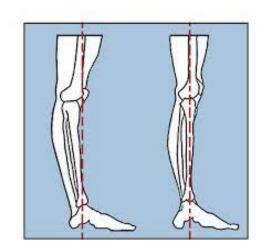

Adduction:

Rotation: BONES ROTATE AROUND AN AXIS. (BALL & SOCKET JOINTS).

Examples: ______**&**

Medial: INWARD Lateral: OUTWARD

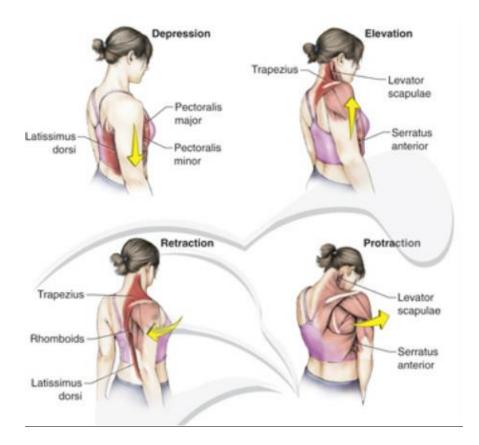
Dorsiflexion: TO FLEX (WRISTS


& FEET/TOES & FINGERS)

Plantar Flexion: POINTING THE

FEET/RELEVE.

Lateral Flexion: SIDE BEND.


Hyperextension:

Pronation: ROLLING THE FOOT IN

Supination:

SCAPULAR MOTIONS

CONNECTIVE TISSUES

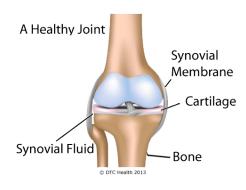
→ Function is to bind, support, insulate and protect structures. (includes bone)

Connective Tissues Include:

- 1. TENDONS
- 2. LIGAMENTS
- 3. CARTILAGE
- 4. FASCIA
- 5. BONE

Types of Connective Tissue:

- 1. LOOSE CONNECTIVE TISSUE
- 2. DENSE CONNECTIVE TISSUE
- 3. CARTILAGE
- 4. BONE
- 5. LIQUID

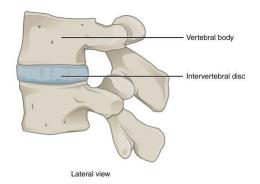

TENDONS VS LIGAMENTS:

	Tendons attach	to
tendon		
VA	Ligaments attach	to
ligament —	and form joints	

: Collagen and elastic fibers that can endure more stress than tendons and ligaments.

3 TYPES OF CARTILAGE:

HYALINE CARTILAGE



→ Most abundant in the body

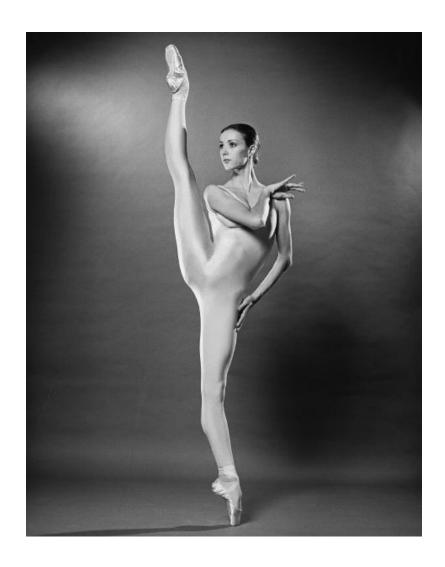
→At _____; reduces friction and absorbs shock

FIBROCARTILAGE

→ _____ type of cartilage → Ex: Intervertebral discs

ELASTIC

→ Maintains the ______of certain structures.

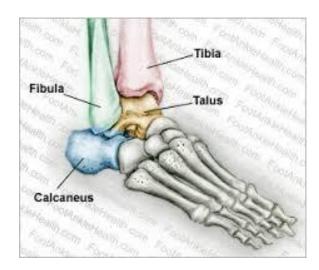

→ Ex: ______& ____.

REFLECT:

Pick 1-2 "terms of direction" & 1-2 "terms of movement". Improvise for 30 seconds with focus on your selected terms. For a harder challenger, pick terms in which feel "unnatural" or repeat this activity with different terms each time.

Film your phrase, and send it to a friend who is also taking Bio/Kines. Can they guess your terms?

THE SKELETAL SYSTEM & THE MUSCULAR SYSTEM

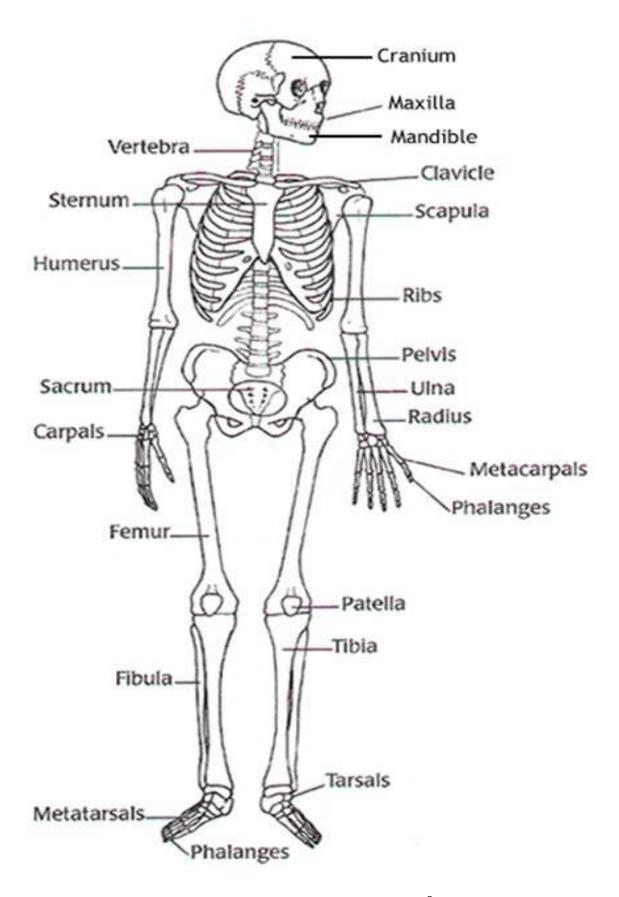

- →BONES
- → MUSCLES
- → THE VERTEBRAL COLUMN
- → THE ABDOMINALS

The Skeletal System: BONES

1.	There are	bones	s in the adult human b	ody.
2.	The entire frame	work of th	e bones including the	ir
			&	comprise
	the skeletal syste			_
Fu	nctions of the B	one:		
1.	Support: Serves	as structur	al framework.	
2.	:	Protects fr	agile organs from inju	ıry.
Ех	: The skull protect	s the	& the ribs proted	ct the
3.	MOVEMENT- movement.	uscles attad	ch to bone and pull on	them to produce
4.	BLOOD CELL PR	ODUCTION	I- within certain bone	s, red bone
			d cells. Red blood cells	
	the transport of		&	

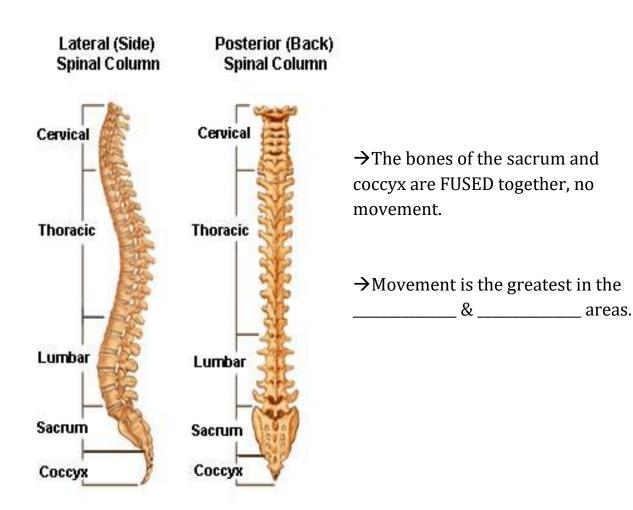
5. ______: Bones store calcium and phosphorus that contribute to strength of the bone.

Bone Remodeling is the ongoing replacement of old bone tissue by new bone tissue. It involves the balance between two processes


- 1. Bone Resorption- the ______of mineral & collagen fibers.
- 2. Bone Deposition- the ______of minerals & collagen fibers.
- → Bone remodeling allows for the removal of injured bone, alteration to account for patterns of stress, stronger bones.

THE AXIAL SKELETON

THE APPENDICULAR SKELETON


THE 5 DIFFERENT TYPES OF BONES:

SHORT BONES: cube shaped, as wide as are long.
Ex:
LONG BONES: greater length than width
Ex:
FLAT BONES: expanded broad, flat plates. Usually to protect an organ & muscle attachment.
Ex:
IRREGULAR BONES: complex shape.
Ex:
SESAMOID BONES: develop in certain tendons where there is considerable friction, tension and stress
Ex:
IN CLASS EXERCISE:

→ In groups, identify a "color" to represent each TYPE OF BONE. Color the skeletons bones (page 5) by category of type of bone.

THE VERTEBRAL COLUMN

- → The spine is composed of _____ separate bones called vertebrae.
- → The vertebral column _____ the spinal cord and spinal nerve roots, in addition to providing _____ for the weight of the body.
- → The vertebral column is the point of attachment for the muscles of the back.

THE MUSCULAR SYSTEM

🗲 Muscles main purpose i	s to produce &	
→ Muscle makes up	of total human body weight.	
→ Muscle tissue is	denser than fat tissue	

TYPES OF MUSCLE:

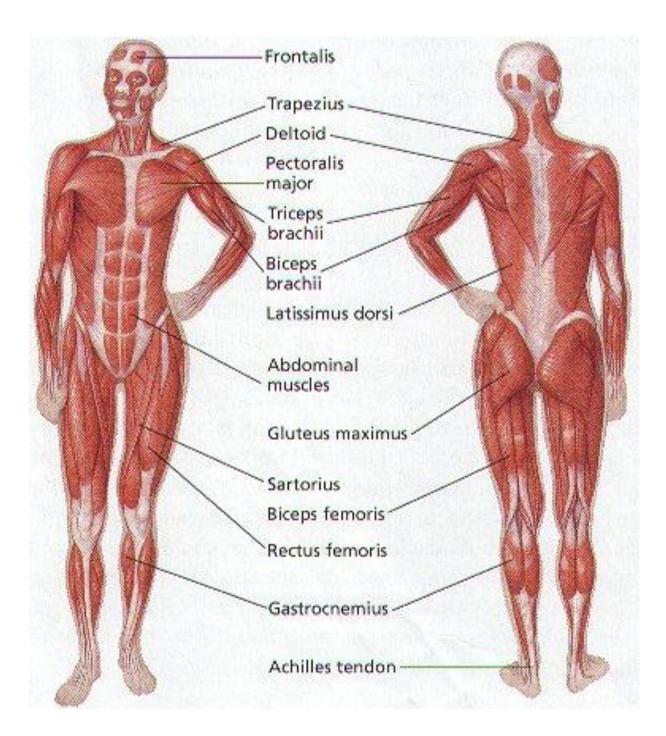
1.	Skeletal muscles that control nearly every action a person INTENTIONALLY performs.
	→ There are skeletal muscles in the human body.
2.	Cardiac- Involuntary muscle that is only found in the and is responsible for keeping the heart pumping.

3. Smooth- Involuntary muscle that is not controlled by our conscious mind. It is found in the esophagus, stomach, intestines, etc. These muscles contract to move substances (such as food) through the organ.

SKELETAL MUSCLE is either:

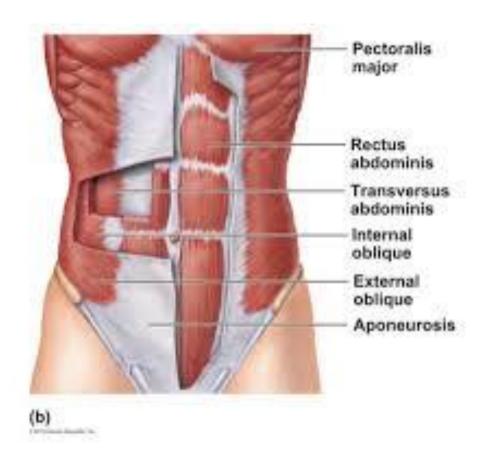
1. **Fast Twitch** – whiter in color, contract quickly and powerfully; fatigue rapidly.

Ex: sprinting & weightlifting


2. Slow Twitch- red in color, uses fats, proteins & carbs as energy, contract over a long period of time.

Ex: long distance running & cycling

→ If muscle strength is regarde	d as the ability to use	_on
something, then the	muscle is the strongest in the body	7.
→ The strongest muscles in rela	ation to the job they have to do is th	e
external muscle of the	_which are about $100\mathrm{x}$ stronger tha	ın
they need to be in relation to th	e small size and weight of the eyeba	all.
Fun Fact: It takes	muscles in the face to smile and	
muscles to frown.		


REPEATING AN ACTION OVER AND OVER AGAIN CREATES MUSCLE MEMORY. MUSCLES FINE TUNE THEMSELVES, BECOMING MORE AND MORE PRECISE AND EXACT IN WHAT THEY DO.

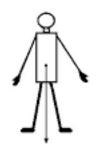
If you practice	your muscle memory will be to
execute the action incorrec	tly. Therefore, if you practice
your mu	scles memory will be to execute the action
correctly.	
PRACTICE REALLY DOES M	1AKE PERFECT!!

THE ABODMINALS

THE ABODMINALS

REFLECT:

Pick a muscle and develop a 5 minute "warm-up" that incorporates both conditioning and stretching exercises of your selected muscle. For a harder challenge, repeat this activity for different muscles.


Consider leading a sibling or parent through your "warmup". Can they identify which muscle/s you are focused on?

THE BODY PLANES/AXES

&

THE CENTER OF GRAVITY

a.

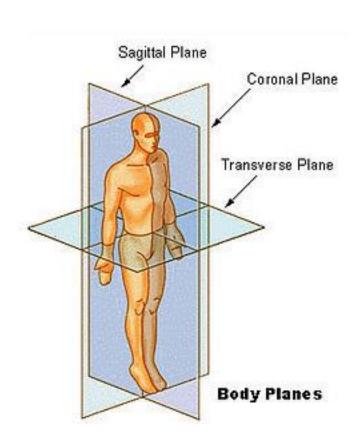
the center of gravity

b.

the center of gravity

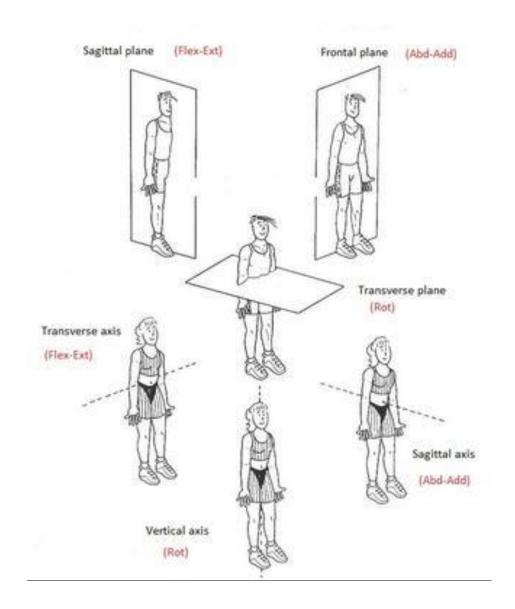
C.

the center of gravity

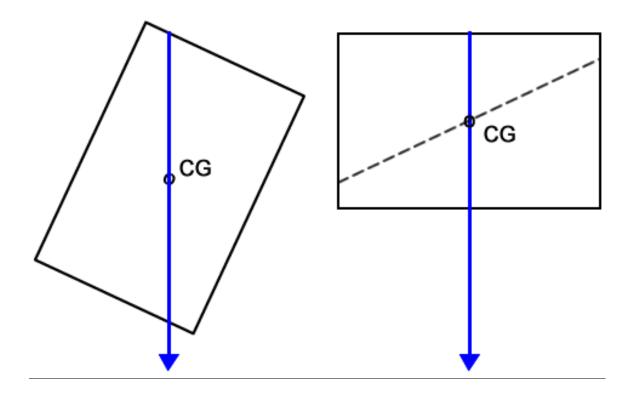

REFLECT:

Before we begin, please film yourself doing 3 tendu prep pirouettes on the right and left side. Ready GO!!! Hold onto this video on yourself. We will come back to this later.

BODY PLANES


: lines of reference of which the body can be divided

→Planes are abstract concepts, not actual volumes.


THE SAGITAL PLANE- divides the
body to
•
THE CORONAL/FRONTAL
PLANE- divides the body
to
THE TRANSVERSE/HORIZONTAL
•
PLANE – divides the body
to

An infinite number of planes may be used to bisect the body in each of the three classes of planes. But one and only one plane of each will
bisect the body equally by
The Mid Sagittal-bisects the body equally by weight right from left.
The Mid Frontal- bisects the body equally by weight front from back
or from
The Mid Transverse-bisects the body equally by weight top from
bottom or from
THE BODY AXES
THE BODT AXES
The human body's height, measured in anatomical position is
represented by a line segment that extends from the soles of the feet to
the crown of the head= Vertical Dimension or
The human body's width, may be measured at any level of the body (the
shoulders, the pelvis, etc.) Wherever width is measured it represents the Horizontal Dimension or
The human body's depth may be measured at any level of the body as well, wherever it is measure represents the A.P. Dimension or
well, wherever it is illeasure represents the A.F. Dimension of

THE CENTER OF GRAVITY (COG)

Points- geometrical references that have	no dimensions. Points are
derived by the intersection ofor	more line segments (axes).
The center of gravity of the body is a	It is derived by the
intersection of the three primary body axe	es. Around the COG, all
movement tendencies are resolved;	

REFLECT:

Again, Film yourself doing 3 tendu prep pirouettes on the right and left side.

Now you have before and after footage on your pirouettes. Compare the two videos. Are they different now? If so, why?

THE KNEE JOINT

&

THE HIP JOINT

- → COMMON INJURIES & TREATMENTS
- → THE PSOAS
- →LIGAMENTS OF THE HIP

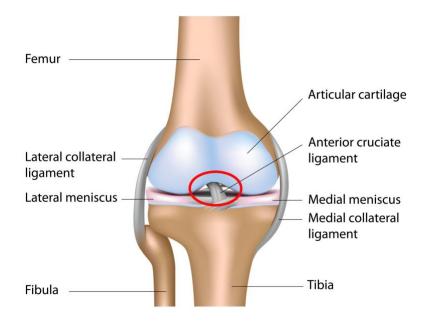
THE KNEE JOINT

THE PATELLOFEMORAL JOINT:

During Flexion and
Extension, the
——————
undergoes a complex
gliding movement that
includes movements
———————————
with very slight medial,
lateral and rotational
components.

MCL Injury-

A sprain or tear to the medial collateral ligament. The MCL keeps the knee from bending inward. Characterized by pain on the inside of the knee. An MCL injury is the most commonly occurring injury in sports.


Tenderness and swelling	are commonly pre	sented.
Such injuries often result	from a	directed force
against the	side of knee. Thi	is is known as VALGUS
stress.		

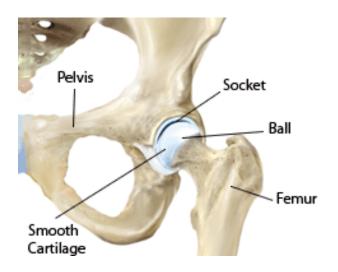
Treatment: Most MCL injuries can be treated at home with rest, ice and anti-inflammatory medicine. Crutches or a brace may be recommended. Activity may be limited for a few weeks.

A 01	-	•
ΛI	In	jury-
льь		ıuı v-
		, <i>J</i>

Most prevalent mechanism of injury in	
landing a jump in	Characterized by an
initial "pop", instability, pain and rapid	d swelling.
A common mechanism for injury to the	is ligament is a blow to the
LATERAL knee that includes EXTERNA	AL ROTATION. When a person
tears their ACL it is due to	&
their knee.	
Symptoms of a torn ACL include major bend the knee. The symptoms of an AC	· ·
an MCL injury.	
Treatment: Immobilization, ice & rest, j and physical therapy. This injury may i	, ,

Anterior view of the right knee

Meniscus Injury-


One of the most common mechanisms of i	njury of the meniscus is
from a	_ abducted position of the
knee, while the leg is	with the foot fixed;
!	
-In dance, it is believed that this mechanis	sm may be operative
chronically, that is that	may result in
long-term wearing and splitting of the me	niscus.

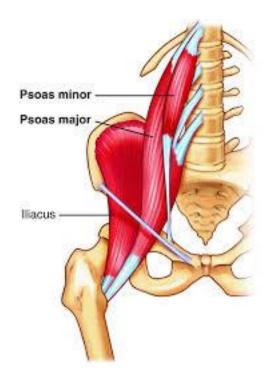
Treatment: Initial treatment includes anti-inflammatory medications, followed by strengthening exercises. Some small tears may heal themselves, but if the knee does not respond adequately to therapy, surgery is usually recommended.

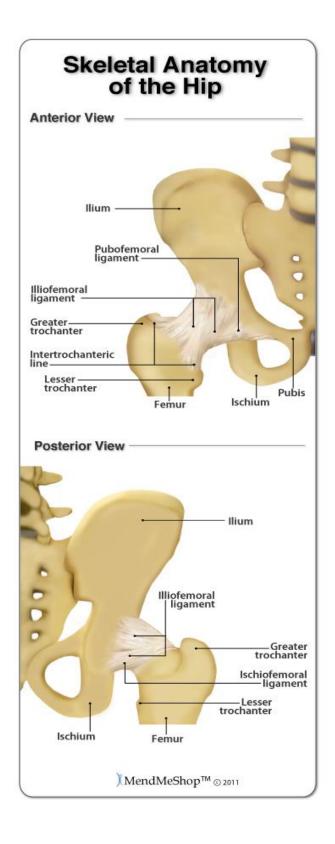
UNDERSTANDING THE DIFFERENCE:

A sprain is the stretching or tearing of			(the	tough	
bands	of fibrous t	ssue that connect two bones to	ogether in you	r	
joints.) The most (common location for a sprain i	s in your		
A strai	in is the stre	tching or tearing of a	or		A
tendoi	n is a fibrou	s cord of tissue that connects _		to	
	 nent: Contro	l swelling with			
		. Swelling with			
	Rest				
<i>2.</i> .	Ice f or	minutes.			
<i>3.</i>	Compress (l	ightly do NOT tightly wrap the	injury).		
4.		the area above the heart le	evel.		

THE HIP JOINT

The hip is a
&
joint.
The hip socket and
femoral head are both
lined with
which
allows the bones to
glide together with
little friction.

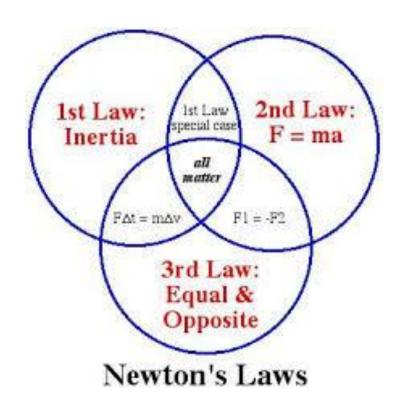

THE PSOAS


The iliopsoas is a deep hip flexor tendon th	nat passes along the front of
the hip joint. The iliopsoas tendon attaches	the iliopsoas muscle (iliacus
psoas major, and psoas minor muscles) to t	he femur at the lesser
trochanter and is the hip fle	xor muscle.

The iliopsoas is a combination of three muscles: **psoas major, psoas minor, and iliacus**.

- 1. One of the most powerful muscles in the entire body and is the most important muscle for hop flexion above 90 degrees.
- 2. The iliopsoas is the only muscle in the human body that has attachments on the ______, _____ & _____. Due to this, the iliopsoas is in a unique position to produce movement and to ______ the hip.

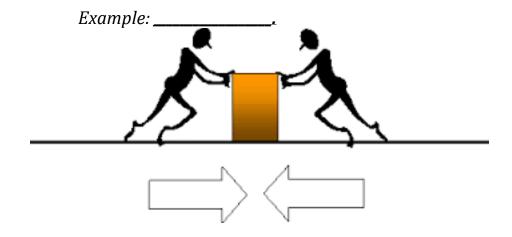
Fun Fact: When the psoas is tight it will cause an arched back.



Ligaments of the Hip Joint:

- 1. **The Ischiofemoral Ligament-** makes up
 the joint capsule of the
 hip & helps control
 movement of the hip.
- 2. The Iliofemoral
 Ligament- is the
 strongest ligament in
 the body. This ligament
 _____ the
 hip and helps to prevent
 the joint from
- 3. **The pubofemoral Ligament-** starts at the pubis and attaches to the femur.

THE LAWS OF MOTION



→ A DEEPER LOOK INTO:

- -CENTER OF GRAVITY
- -BASE OF SUPPORT
- -BALANCE

THE LAWS OF MOTION

MOTION = the act or process of changing place or position. All motion, including motions of the human body, planets or the strength of buildings and bridges is the result of the applications of ____and is subject to the laws and principles that govern _____& _____. **FORCE**= Is any action or influence that ______an object. MASS= refers to the _______of _____that a body contains (size & weight). *Example:* ________. **INERTIA**= is the property of mass that causes it to _____any change of its motion in either speed or direction. →The tendency of an object to stay at _____ or to stay in **TORQUE**= is the tendency or ability of force to produce ____about an axis. *Example:* ______ **FRICTION**= is a force developed by two surfaces, which tends to motion of one surface across another.

THE NATURE OF FORCE= objects start moving when they are pushed or pulled!!


- 1. Forces _____motion.
- 2. Forces _____motion.
- 3. Forces_____speed.
- 4. Forces can cause objects to _______.

FORCE IS THE EFFECT THAT ONE BODY OR OBJECT HAS ON ANOTHER!!!!

INTERNAL & EXTERNAL FORCE

Internal Force= usually classified as various structures of the body.		forces acting on
External Force= are those	the body.	
Example:		

SIR ISAAC NEWTONS (1642-1727) THREE LAWS OF MOTION

I. THE LAW OF INERTIA

- A body at rest tends to remain at _______.
- A body in motion tends to remain in _____, with consistent speed and in the same direction unless acted upon by an outside force

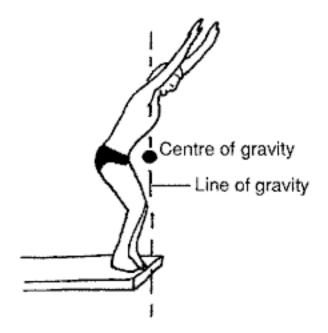
II. THE LAW OF ACCELERATION

- The amount of acceleration of an object /body depends on the strength of the force applied to the object.
- The change in direction of an object depends on the force applied to it!

		differing masses	same amount of force to two s, the object with the greater then the object w	mass will
III.	T	HE LAW OF ACT	ION	
	-	For every	there is an	or
	-	ill be opposite (i	of any force will create anot in	
	-		_)_to the first force.	
		BAI	ANCE & STABILITY	
GRAVI	TY=	is the mutual att	raction between the	& an
			is always directed vertically th (down towards the groun	
BALAN	ICE:	:		
1. T	he .		force on the body equals the	e
2			force.	
3. V	Vhe	n an object (or bo	ody) is balanced, all forces ac	cting on it are
4		, and it	is in a state of equilibrium.	
5. H	łow	secure or precari	ious this state of equilibrium	n is depends on
6. t	he r	elationship betwe	een the objects an	d

7. Gravity downward and floor upward are the only forces acting on the body when we are in a state of balance.

CENTER OF GRAVITY


That point in any body around which all movement tendencies are

neutralized, resolved, or _____!!

point of an object at whis sides is	ich weight on all three
all three planes	the body.
LOG/LINE OF GRAVITY imaginary vertical line p	
toward the ce	nter of the earth.
BOS/BASE OF SUPPOR body that is in contact was surface.	•

- 1. The lower the COG to the earth, the more stable the object.
- 2. The _____ the BOS, the more stable the object.
- 3. The $\overline{\text{COG}}$ and LOG must remain within the BOS for an object to remain stable

REFLECT:

Develop a phrase or complete a 30 second improvisation in which demonstrates at least one law of motion. For a harder challenge, illustrate all 3 laws of motion!!

Film yourself and send it to a friend who is also taking the class, can they identify which law of motion you selected?